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A density-matrix treatment of small-polaron motion is presented for the case in which the electronic over
lap term of the total Hamiltonian is a small perturbation. The principal result of the density matrix formalism 
is that total small-polaron mobility can be expressed as the sum of a band part (V0

2T), characteristic of the 
low-temperature regime (T<Tt), plus a part (WTO?) describing the hopping motion dominant at high 
temperatures (T>Tt). This verifies the separation of the above two types of motion made on the basis of 
physical arguments. In addition, the present treatment avoids certain formal divergences in the integrals 
for the jump probabilities. Furthermore, the hopping contribution does not require localization of the 
polaron at a particular site, but follows from a translationally invariant formulation. These results are ob
tained, in part, from lowest order Boltzmann equations which are derived both in the local-site and polaron-
band representations. The principal contributions to the scattering terms of the Boltzmann equations are 
determined by interference effects between the matrix elements, which are examined in some detail. 

INTRODUCTION 

DURING the past several years, there has been con
siderable theoretical interest in the basic mecha

nisms of small-polaron transport. The small-polaron 
concept applies to semiconductors of sufficiently narrow 
electronic-conduction bandwidth (or valence band-
widths, in the case of hole conduction) for which the 
interaction of the charge carrier with the lattice vibra
tions is particularly strong. In such a situation, the 
charge carrier gets essentially self-trapped in the im
mediate neighborhood of one of a large number of 
crystallographically equivalent atomic sites. The exist
ence of a nonvanishing electronic overlap then gives 
rise to occasional transfers among these sites. The unit 
consisting of the charge carrier and surrounding induced 
lattice deformation—the latter serving as a potential 
well in which the carrier is self-trapped—is designated as 
the small polaron. 

Conventional (large) polaron theories1'2 are based on 
a continuum model in which: (a) the ionic dipole mo
ments arising from the displacements of the discrete 
lattice particles are replaced by a continuous polariza
tion field, and (b) the motion of the charge carrier is 
formulated in terms of an effective mass approximation. 
Such a model is clearly inadequate in describing the 
small polaron, whose dimensions are of the order of the 
lattice spacing. Rather, the periodicity of the discrete 
lattice structure must be taken into account explicitly. 

This distinction was first recognized and treated by 
Tyablikov.3 Employing a tight-binding approach in 
which the electronic overlap part of the total Hamil-

* The initial stages of this work were begun at the University of 
Pittsburgh, and supported by the U. S. Air Force Office of Scien
tific Research, Grant No. AF 196-63. 

1 S. I. Pekar, Issledovaniya po Electronnoi Teorii Kristallov, 
Gosudarstvennoe Izdatel'stvoTekhniko-Teoreticheskoi Literatury, 
Moskva, 1951 [English transl.: AEC-tr-5575, Feb. (1963), Office 
of Technical Services, Department of Commerce, Washington, 
D. C.]. 

2 H. Frohlich, Advan. Phys. 3, 325 (1954). 
3 S. V. Tyablikov, Zh. Eksperim. i Teor. Fiz. 23, 381 (1952). 

tonian was treated as a small perturbation,4 he showed 
that band spectrum of the small polaron is character
ized by a width which is exponentially smaller than the 
purely electronic bandwidth by a factor depending on 
the overlap of neighboring vibrational wavefunctions. 
His treatment of the "polaron-band" is limited to the 
absolute zero of temperature, however, thereby pre
cluding any consideration of the hopping-type conduc
tion prevalent at high temperatures. 

The finite temperature case was next investigated by 
Yamashita and Kurosawa.5-6 Using a discrete descrip
tion of the crystal lattice, but treating the electron-
lattice interaction by a continuum approximation, 
these authors were the first to note that the polaron 
bandwidth, already very small at T=0, decreases even 
further (in particular, exponentially) with increasing 
temperature. As a consequence, they point out that the 
corresponding small-polaron mass (which varies in
versely with bandwidth) is exponentially large. They 
therefore argue that a localized description is more 
appropriate than polaron-band motion, and then go 
on to calculate the lowest-order elementary jump rate 
between local sites. They do not, however, make clear 
the criteria which distinguish the two regimes. The 
polaron-band motion and its temperature dependence 
was also carefully formulated and studied by Sewell7; 

4 It should be pointed out that all of the references to be dis
cussed, as well as the treatment of the present paper, are largely 
confined to the case in which the electronic overlap term of the 
total Hamiltonian can be treated as a small perturbation. How
ever, it should be noted that there is a remaining (adiabatic) 
regime in which the polaron is small, but perturbation theory does 
not apply (see Refs. 6, 8, and footnote 22). 

6 J. Yamashita and T. Kurosawa, Phys. Chem. Solids 5, 34 
(1958). These authors employ an Einstein spectrum and an arbi
trary cutoff t<2ir/o)o of the type discussed in footnote 11. 

6 J. Yamashita and T. Kurosawa, J. Phys. Soc. Japan 15, 802 
(1960). This paper considers the practical consequences of in
cluding a small, fluctuating potential (due to a random distribu
tion of impurities) on small-polaron motion, and, in particular, on 
the "washing out" of the polaron-band motion. In the present 
paper, it is shown that the dominance of the hopping motion for 
T>Tt is an automatic consequence of the theory, even for the 
ideal, periodic case. 

7 G. L. Sewell, Phil. Mag. 3, 1361 (1958). 
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however, he gave no consideration to the hopping-type 
motion prevalent at high temperatures. 

A more satisfactory resolution of the above two types 
of small-polaron motion was given by Holstein.8 I t 
was here pointed out that the basic distinction between 
the two regimes is determined by two basic classes of 
matrix elements which describe site-jump transitions. 
As will be made explicit later in the paper, the low-
temperature polaron mobility is dominated by the so-
called "diagonal" matrix elements, in which the totality 
of vibrational quantum numbers accompanying a site-
jump transition remains precisely unchanged.9 These 
matrix elements give rise to the previously described 
temperature-dependent polaron bandwidth. In this 
regime, the role of the "nondiagonal" matrix elements, 
denned as those in which some of the vibrational quan
tum numbers change by ± 1 , is to provide scattering 
between polaron-band states, and therefore to deter
mine their lifetimes in the absence of other scattering 
mechanisms (which is the condition we shall assume to 
apply). I t was then argued that above a certain transi
tion temperature10 Tt the energy broadening of the 
polaron-band states exceeds the (exponentially de
creasing) polaron bandwidth, the band approach clearly 
breaks down, and a localized basis becomes the more 
appropriate starting point. In this high-temperature 
regime, the nondiagonal matrix elements now play the 
dominant role, giving rise to a diffusion-type motion of 
the charge carrier, in which the basic steps are random 
jumps between local sites. 

Recent investigators have essentially confirmed the 
above picture of small-polaron motion.11 Klinger,12 by a 
resolvent technique which introduces collision damping 
of the polaron-band motion, finds that the criteria for 
summing certain term sequences of diagonal transitions 
[cf. later text and footnote 20] are essentially the 
same as those cited above, with some differences in 

»T. Holstein, Ann. Phys. (N.Y.), 8,-343 (1959). 
9 These matrix elements therefore provide exact energy 

conservation. 
10 In practice, Tt turns out to be ^4©z>, where ©D is the optical, 

Debye theta. 
11 R. R. Dogonadze and Yu. A. Chizmadzhev, Fiz. Tverd. Tela 

3, 3712 (1961) [English transl.: Soviet Phys.—Solid State 3, 2693 
(1962)]; R. R. Dogonadze, A. A. Chernenko, and Yu. A. 
Chizmadzhev, Fiz. Tverd. Tela 3, 3720 (1961) English transl.: 
Soviet Phys.—Solid State 3, 2698 (1962)]. These authors also ob
tain the dual aspect of small-polaron motion found in Ref. 8 and 
the present paper (viz., the scattering probabilities between band 
states, and the site-jump transition rates), with some differences 
in detail. These differences appear to be due to the fact that account 
is not taken of dispersion of the vibrational spectrum which, 
in the opinion of the present author, is essential in obtaining con
vergent expressions for the transition probabilities. These authors 
apparently obviate this difficulty by arbitrarily restricting the limits 
on the time integrations to t^.2ir/o)o, where coo is the Einstein 
frequency. 

12 M. J. Klinger, in Proceedings of the International Conference on 
the Physics of Semiconductors, Exeter 1962 (The Institute of Physics 
and the Physical Society, London, 1962), p. 205; Fiz. Tverd. Tela 
4, 3074 and 3086 (1962) [English transl.: Soviet Phys—Solid 
State 4, 2252 and 2260 (1963)]. 

detail. Lang and Firsov13 have provided a systematic 
perturbation development of small-polaron mobility, in 
which the smallness parameter £772, defined in footnote 
22] is just that obtained in Ref. (8). In the high-
temperature regime, the leading term for the mobility 
is gain the same as that given in Ref. (8). In addition, 
two alternating and rapidly decreasing sequences of 
terms for the mobility are obtained in increasing powers 
of the smallness parameter. However, in the low-tem
perature polaron-band regime, using an alternate Boltz-
mann equation treatment derived by diagrammatic 
techniques, these authors point out that a higher order 
contribution14 to the scattering between polaron band 
states, not considered in Ref. (8), can compete with or 
dominate the lowest-order contribution, and therefore 
serve to limit the band contribution to polaron mobility. 
Nagaev15 has adopted an alternate approach which is 
basically different from those of the previous authors. 
He constructs his basic wave functions from plane-wave 
combinations of states which, in turn, are superpositions 
of localized states with varying distributions of the vi
brational quantum numbers, but with a fixed number of 
total excitations. From such a basis, the mean-square 
dispersion of the polaron bandwidth is found to increase 
with increasing temperature. Thus, he concludes that 
the increase in small-polaron mobility with tempera
ture follows from the band motion alone, and is not 
associated with site-jump transitions (in this connec
tion, see the discussion of Sec. VI). While plausible for 
the case of an Einstein spectrum, where all states in the 
above linear combination are strictly degenerate, such 
a recipe becomes ambiguous for a finite vibrational dis
persion which lifts this degeneracy. For this case, the 
above states are chosen to lie within some energy inter
vale L of arbitrary width. Indeed, it is pointed out that 
in the limit L —* 0, the mean-square dispersion now de
creases with temperature as predicted in Ref. 8 and in 
the present paper. Moreover, the density-matrix treat
ment of the present paper, which is invariant to the 
choice of representation, gives no evidence for any in
crease of bandwidth with temperature [cf. (4.5), (4.9), 
(4.11), and Sec. VI ] . 

1 3 1 . G. Lang and Y. A. Firsov, Zh. Eksperim. i Teor. Fiz. 43, 
1843 (1962) [English transl.: Soviet Phys.—JETP 16, 1301 
(1963)]. 

14 As pointed out by T. Holstein (private communication), this 
additional contribution corresponds to processes of the type p, 
Nklt Nk2 - » P ± h Nki±l, Nk2 -» P, Nkl±l, Nk2±l, in which the 
polaron eventually remains on site p, but the vibrational state 
changes. These processes are therefore scattering events between 
polaron-band states which do not constitute site-jump transitions 
(p -+->• ^ ± 1 ) . That they make an important contribution is princi
pally due to the fact that, though smaller than the first-order non-
diagonal process by a factor ~J2, they do not contain an 
activation-type factor, since the above intermediate state is vir
tual. Processes of this type can, in principal, be treated as higher 
order effects within the density-matrix formalism of the present 
paper. Although a proper accounting of such terms will affect the 
transition temperature Tt, it is felt that this will not alter the 
essential features of the present paper, in particular the additivity 
of our final result (4.17). 

15 E. L. Nagaev, Fiz. Tverd. Tela 4, 2201 (1962) [English transl.: 
Soviet Phys.—Solid State 4, 1611 (1963)]. 
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Reik16 has recently shown that the high-temperature 
drift mobility formula of Ref. 8 also follows directly 
from the Kubo formula. He does not consider the low-
temperature mobility due to polaron-band motion. His 
approach has the advantage of being translationally in
variant, as is the density-matrix treatment of the pres
ent paper. However, in the opinion of the present author, 
Reik's final result, given by Eq. (10) of his paper, is not 
correct in detail. Specifically, it is correctly pointed out 
that this result is essentially equivalent to Eq. (57) of 
Ref. 8. However, in the text following Eq. (57) of Ref. 
8, it is established in some detail that (57) diverges 
linearly with /, and therefore cannot represent a con
ventional transition rate. [This can be seen qualitatively 
from the argument of the exponential appearing in the 
integrand. For large r and some dispersion of the vibra
tional spectrum ook, the sum over k of the terms pro
portional to cos(o>&r) tends to oscillate about a mean 
value of zero. I t is not surprising, therefore, that this 
sum turns out to vary as an inverse power of r for large 
r (specifically, as r~1/2). The integral therefore exhibits 
a linear divergence in the limit of infinite interaction 
time t. I t might also be remarked that the adiabatic 
factor exp(er) is not sufficient to provide convergence 
in the limit that e —> 0.] This difficulty is due to the tacit 
inclusion of the diagonal matrix elements in the treat
ment, and is rectified in Ref. 8 by a suitable subtraction 
recipe (see footnote 20). In the present paper, the con
tributions of the diagonal elements are rigorously ex
cluded from the jump probabilities, thereby avoiding 
this difficulty. 

In a research note, Frohlich and Sewell17 have dis
cussed the breakdown of conventional band theory in 
narrow-band semiconductors, and the alternate applica
bility of small-polaron theory. They discuss a number of 
scattering mechanisms in the polaron-band regime, in 
addition to the nondiagonal processes operative in the 
ideal case. They also note the site-jump transitions 
operative at high temperatures, and calculate the mo
bility appropriate to a two-phonon hopping process; 
however, they note the larger weight which must be 
given to multiphonon5 '8 transitions when the electron-
phonon coupling is strong. Frohlich, Machlup, and 
Mitra18 have recently called attention to an additional 
aspect of the small-polaron problem which has thus far 
not been taken into account: namely, the dependence 
of the electronic overlap integrals on the vibrational dis
placement coordinates (via their dependence on the 
local electronic wave functions appropriate to the 
instantaneous ion positions). While this is a real physical 
effect which would tend to broaden the electronic over
lap with increasing temperature, a question remains as 
to whether its temperature dependence would be suffi-

16 H. G. Reik, Phys. Letters 5, 236 (1963). 
17 H. Frohlich and G. L. Sewell, Proc. Phys. Soc. (London) 74, 

643 (1959). 
18 H. Frohlich, S. Machlup, and T. K. Mitra, Phys. Kondens 

Materiel, 359 (1963). 

ciently rapid to appreciably affect the strong exponen
tial decrease of the polaron bandwidth arising from the 
vibrational overlap factor. As far as the effect of this de
pendence on the hopping motion is concerned, it should 
be pointed out that, as has been shown by a classical 
treatment of the lattice motions,8 the site jumps occur 
for a more or less particular value of the overlap: 
namely, that appropriate to a vibrational configuration 
corresponding to a momentary coincidence of the elec
tronic energies of neighboring sites. Thus, from this 
point of view, variations in overlap with relative dis
placement would not be expected to basically alter the 
form of the hopping mobility obtained on the basis of 
a constant overlap evaluated for the above coincidence 
configuration. 

The purpose of the present study is to present an 
alternate formulation of small-polaron motion which 
serves to treat both the band motion and the hopping 
motion in a more unified fashion, and also serves to re
move some of the formal objections to the theory. This 
approach is a density-matrix formulation of small-polaron 
motion, analogous to (but differing in important ways 
from) the well-known density-matrix treatment of Kohn 
and Luttinger.19 The use of such an approach is strongly 
suggested by the previously described distinction be
tween the diagonal and nondiagonal matrix elements of 
the perturbation: the density matrix approach provides 
such a separation in a natural and straightforward 
fashion. By the general procedures of Ref. 19, a 
"Boltzmann" equation is obtained to lowest order in the 
overlap / (which plays the role of the dimensionless 
parameter X in the work of Kohn and Luttinger). The 
time rate of change of the density matrix is essentially 
given by a part which wholly describes the band motion, 
plus a scattering term which provides damping of the 
band propagation. In this connection, a formal difficulty 
of the theory is avoided: namely, that the diagonal 
matrix elements of the perturbation are rigorously 
absent from the expression for the jump rate, and do not 
have to be subtracted out by physical arguments.20 The 
principal result of the present paper, given by Eq. 
(4.17), is that, to lowest order in / , the expectation value 
of velocity is given by a band part (fl<r27v), plus a con
tribution due the hopping motion ^WTa2. (Here, va is 
the polaron velocity in Bloch state a, r , is its lifetime, 
(• • •) indicates a statistical average over the polaron 
band, WT is the thermal average jump rate between 
nearest neighbor sites, and "a" is the lattice constant.) 
The density-matrix treatment therefore confirms the 

19 W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957). 
20 As pointed out in Ref. 8, the diagonal matrix elements provide 

exact energy conservation and therefore lead to a transition 
probability which increases quadratically (rather than linearly) 
with time. However, the time over which the diagonal transitions 
can occur is limited by the lifetime of the localized states, and by 
the very definition of the site-jump regime, the probability of such 
a transition in such a time turns out to be much less than unity. 
Hence, this is a purely formal, rather than a basic physical 
difficulty. 
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separation of the two types of small-polaron mobility 
according to the criteria given in Ref. 8. The present 
approach also overcomes another objection to the 
theory: namely, that localization of the carrier at a 
given site (which is made in order to compute the jump 
probability) is inconsistent with the translational in-
variance of the system. In the density-matrix approach, 
the site-jump term is obtained on the basis of a zeroth-
order density matrix [cf. (4.6)] (which applies for 
zero electric field and zero overlap) which represent a 
uniform probability distribution of the carrier over the 
lattice.16 

In deriving the lowest-order Boltzmann equation, we 
also exhibit certain interference effects among the matrix 
elements which determine the scattering processes of 
importance, and the form of the Boltzmann equation. 
Although the final expectation value of velocity is in
dependent of the choice of basis functions, the above 
described program is also carried out in the polaron-
band representation, since this emphasizes characteris
tic differences between the Boltzmann equations in the 
two representations. Finally, we note that only the 
lowest-order Boltzmann equation is obtained. We do 
not carry out the iterative procedure by which higher 
order corrections to the current can be obtained from 
the density-matrix equations of motion. A systematic 
treatment of this type should agree with the perturba
tion development14 given in Ref. 13. 

II. BASIC HAMILTONIAN AND DENSITY-MATRIX 
EQUATIONS OF MOTION 

The starting point of the density-matrix formulation 
is the Hamiltonian appropriate to a single excess elec
tron in a one-dimensional molecular crystal in the 
presence of a weak, externally applied, electric field. 
This model has been described in detail in Ref. 8 and 
elsewhere,21 and so will not be reiterated here. We shall 
simply write down the basic Hamiltonian, attempting 
to make clear the physical significance of its various 
parts. The basic equation of motion reads: 

<*(da(n,. • •<?*• • • ) / « ) = { £ Hk™+Eb+eFn) 

k 

Xa(n,- • -qk' • •) — J{a(n+1, • • -qk- •) 

+ a ( w - l , •••g*---)}. (2.1) 
In this equation, the a(n,- - -qk— -) are the amplitudes 
of the total wave function of the system in a tight-
binding expansion of the form 

\£(r,« -*i- •) = £ # 0 v ' •**" * •)*(*—»a> xn), (2.2) 
n 

in which the <j> are the set of local electronic wavefunc-
21L. Friedman and T. Holstein, Ann. Phys. (N. Y.) 21, 494 

(1963). This reference contains the generalization for the case of 
an applied magnetic field. The present density-matrix method can 
also be generalized to treat the correlation effects discussed in this 
reference which are responsible for the existence of the Hall 
effect in the multiphonon site-jump regime. 

tions centered at the various lattice sites n,r is the elec
tronic coordinate, and the %i are the vibrational dis
placement coordinates. In going from (2.2) to (2.1), the 
Xi have been transformed to the normal mode coordi
nates, qk, of the host crystal. 

The quantities Hk
(n) are displaced oscillator Hamil-

tonians, given by 

Hk^= - (¥/2M)(d'/dqk')+^Mo:k
2(qk-qk^y, (2.3) 

where M is the (reduced) mass of the lattice particles, 
a)k

2=uo2-\-o)i2 cos& gives the dispersion of the vibrational 
spectrum, and the qk

in) represent the displacements of 
the normal mode coordinates which occurs as a result 
of incorporating the linear electron-lattice interaction 
in zeroth order. Finally, E&(<0) is the corresponding 
small-polaron binding energy, F is the applied electric 
field strength, and (—/) is the standard electronic over
lap integral of tight-binding theory (assumed to be a 
constant18 for all pairs of nearest-neighbor sites). 

The present treatment is based on the so-called jump-
perturbation approximation, in which the /-proportional 
term of (2.1) can be treated as a small perturbation.22 

In the absence of this term (and also for zero electric 
field), the electron is confined to a particular site, say 
n—p. The corresponding eigenstates of (2.1) are given 
by 

ap,...Nk...(n,- • -qk- • •) 

= 8np I I ** *[(Af»*/*)1/2(g*-?*(p))], (2.4) 
k 

where the &Nk(z) are normalized harmonic oscillator 
eigenfunctions of vibrational quantum number Nk. 

To keep clear the later treatment, it is important to 
point out that the a's should be though of as "wave-
functions" satisfying (2.1); they are functions of the 
dynamical variables n and (•••?*•••)> a n d a r e specified 
(in zeroth order) by the quantum numbers p and 
(• • • Nk - - •). Also, since the latter notation will occur fre
quently in the remainder of the paper, the totality of vi
brational quantum numbers will henceforth be abbrevi
ated by N: thus, # = ( • • • # * • • • ) , # '= ( • • •#* ' • • • ) , 
etc. The total number of sites will be distinguished by a 
capital script 3d. 

The eigenvalues corresponding to (2.4) are 

EN=Zho>k(Nk+±)+Eb. (2.5) 
k 

The perturbation development proceeds according to 
standard time-dependent perturbation theory: The 
total wave function of (2.1) is expanded in the inter-

22 As pointed out in Ref. 8, the small-polaron condition J<Eb 
is not sufficient for the applicability of the jump-perturbation 
approximation. Rather, the more stringent condition 

where Ea is the activation energy, is required (for the case T>Tt 
of principal interest). The adiabatic regime referred to in footnote 
4 is defined by /<£&, 172^1. 



D E N S I T Y M A T R I X F O R M U L A T I O N O F S M A L L P O L A R O N M O T I O N A237 

action picture in the basis provided by (2.4): 

*(»,-••«*• • • ; ' ) = £ c(p',N';t) 
p'N' 

Xap>N,(n,'-qk'-)e-MW'. (2.6) 

The C's are then found to obey the equations 

ih(dC(p,N; t)/dt) = eFpC(p,N; t) 

+ £ {pN\V\p'N%tyN'\t)eM*><*»-*»'K (2.7) 
p'N' 

The (pN\ V\p'N') are the basic matrix elements of the 
perturbation Q.e., of the /-proportional term of (2.1)]. 
They are different from zero only if p and p' are nearest-
neighbor sites. Their explicit form is given in Ref. 8 
and is written down here for future reference: 

(p'N'\V\pN)=-J Z V ,* i I I{ [ l - (4 /9 l ) 

X (Nk+i)yk cos2(Hp+h)+lv)lSNk>,Nk 

^l(s/ffLy^ky^K(Nk+i±h)y,i 

Xco&(k(p+h)+hr)lfiNk>.Nk±i), (2.8) 

where /z&=zl=l according to whether k is positive or 
negative, and the Y&'S are the characteristic coupling 
constants of the theory, given essentially by the ratio 
of the polaron binding energy to the vibrational quan
tum fiuk. 

From the above form, it is furthermore clear that the 
nondiagonal matrix elements are smaller than the 
diagonal ones (which are ~3l°) by the factor <3l~s/2

) 

where S is the number of quantum numbers in the set 
Nf which differ from the corresponding ones in N by 
d=l. As discussed in the Introduction, this distinction 
is of fundamental importance. 

Having completed the discussion of the Hamil-
tonian, we now consider a statistical ensemble of non-
interacting small polarons, each moving under the action 
of the identical Hamiltonian (2.1). In terms of the Cs 
defined by (2.6), the total density matrix in the local-
site representation is defined by 

( p r ) p ^ % ^ ^ < C ( ^ 0 ^ ( ^ ) ^ ( ^ M ) ( ^ / - ^ ) ) , (2.9) 

where the brackets denote an average over the sta
tistical ensemble23 of small polarons. It is rather im
portant to make clear that the distinction between the 
diagonal and nondiagonal elements of the density 
matrix is made only with respect to N and not with 
respect to p (or other additional quantum numbers), 
unless specifically so stated.24 

The equation of motion for the total density matrix 
is readily obtained by taking the time derivative of 

23 R. C. Tolman, Principles of Statistical Mechanics (Oxford 
University Press, New York, 1930), p. 327. 

24 The reason, as will be shown later, is that the velocity opera
tor is nondiagonal in p, so that the only elements of the density 
matrix which contribute to the current are those for which p'?*p. 

(2.9), and making use of (2.7) and its complex con
jugate. We get 

iHd(PT)p'N>,pN/dt) = eF(p'—p)(pT)p,N,tPN 

+ (ENf—EN) (PT) p> N', PN 

+ E [.(p'N'\V\p"N")(PT)p„N„,pN 
p"N" 

-{PT)P>N>,P»N»(P"N"\V\PN)-], (2.10) 

where the (p'N'\ V\pN) are given by (2.8). This result 
can also be straightforwardly obtained by taking 
matrix elements of the equation of motion of the 
density operator 

ih(dpr/dt) = [ (#o+ V+HF),pTl 

in the local site representation, \pN). Here H0 is the 
zeroth order (J=F=0) Hamiltonian, V is the overlap 
part of the Hamiltonian, and HF=eFn is the electric-
field part. 

As usual, we are interested in the linear response of 
the system, and therefore set 

PT=P+PF, (2.11) 

where p represents the equilibrium density matrix, and 
PF is a small additional part linearly proportional to F. 
(Here and in what follows, we follow the notation of 
Kohn and Luttinger, Ref. 19, as much as possible.) 
Substituting (2.11) into (2.10), one gets 

ih(dpp>N>,pN/dt)= {EN>—EN)PP>N',PN 

+ £ Z<P'N'\V\p"N")pwtPir 
p"N" 

-Pp>N>,p»N»(p"N"\V\pNny (2.12) 

as the equation of motion25 obeyed by p, and 

ih(d(pF)p>N,tPN/dt) = eF(p'—p)ppfNftPN 

+ (EN>—EN)(pF)prN,tPN 

+ E WN'\V\p"N"){pF)p„N„,pN 
p"N" 

-{PF)P>N>,P»N»{P"N"\V\PN)~], (2.13) 

describing the linearized response. 
In accordance with the adiabatic hypothesis, the 

system is taken to be in thermal equilibrium at /=•= •— °o. 
It is then isolated from the heat bath, and the electric 
field is turned on adiabatically according to 

F^Foe", - oo < K 0 . (2.14) 

One seeks solutions of (2.13) for which the induced 
currents are at all times proportional to the applied 
field, that is, 

PF=fe*<. (2.15) 

25 This equation will in practice be solved at t — — oo under 
equilibrium conditions (d/dt=0) (see footnote 34). 
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Equations (2.14) and (2.15) are now substituted 
into (2.13). With respect to the sum over N" in (2.13), 
those terms involving diagonal elements of V and / 
are specifically separated out from the sum. The 
diagonal elements of p and / are designated by 

PpfN,pN^Pp'p(N) , fp'NtpN = fp'p{N) . 

In addition, we define the frequency differences 

Incorporating the above definitions, the nondiagonal 
( i W N ) and diagonal (N'=N) forms of (2.13) are 
given by 

— h{<j)N'N—-is)fv'N',pN=eF^{pr — p)pv'N',pN 

+T.t(p'N'\V\p"N)fp„p(N) 
P" 

-U*-m<j>"N'\V\pN)1 
+n\:(p'Nf\v\p"N')u,N,,PN 

P" 

-f*N>.*'«W'N\V\pNY\ 

+ Z WN'\V\p"N")fP,.N„,pN 
p" ,N"9±N,Nf 

-U*:w{p"N"\V\pN)-], 
(N'^N), (2.16) 

and 

ihsfp,p(N) = eFf>(p'-p)Pp,p(N) 

XL<p'N\V\p"N)f,.p(N) 

p" 

-U*>(N)<P"N\V\pN)l 

+ £ l(p'N\V\p"N")fp.,N..,pN 

p" ,Nn9^N 

-fp>N,p»N»(p"N"\V\pNft, 

(N' = N). (2.17) 
Equations (2.16) and (2.17) provide the starting 

point for the derivation of the lowest-order (in / ) 
Boltzmann equation, presented in the following section. 

III. BOLTZMANN EQUATION IN THE LOCAL-
SITE REPRESENTATION 

In the present section, we present the derivation of 
the lowest order Boltzmann equation obeyed by the 
diagonal density-matrix elements, fPP'(N). The formal 
procedure is the usual one of developing the non-
diagonal elements fP>N\pN of (2.16) in a power series 
in J, and then eliminating these in (2.17) in favor of the 
diagonal elements. 

Let us first consider (2.16). The first (driving) term 
on the right-hand side26 is proportional to the non-

26 This term [as well as the corresponding term in (2.17)] is 
perhaps more familiar as the matrix element of the commutator of 
the field Hamiltonian, HF = eFn, and the equilibrium density 
matrix, p. 

diagonal elements of p which will be shown later to be of 
the order J1 or higher. In the iterative procedure, the 
last two terms of (2.16) are proportional to JXfp'N',PNy 
and can therefore be neglected in lowest order. The 
lowest order diagonal elements fPV>{N) will be later 
shown to be of the order27 J - 1 , and, thus, the second 
term on the right-hand side of (2.16) dominates. We 
thus obtain 

XZt{p'N'\V\p"N)fp„p(N) 

-f^<N'){p"N'\V\pN)-]. (3.1) 

With respect to the second term on the right-hand side 
of (2.17), it is shown in Ref. 8 that the diagonal matrix 
elements of V can be put into the form 

(p'N\V\pN)=-Je-^ Z «•.*-., (3-2) 

where 
S(N) = T,(l+2Nk)yk/Vl. (3.3) 

k 

Substituting (3.1) and (3.2) into (2.17), we obtain 
the equation 

ihsfp>p(N) = eF0(p'-p)Pp>p(N) 
-Jr*™{Up>+UN)+fP>-UN)l 
-Up>.p+i(N)+fp>.p-i(N)l)+P--D. (3.4) 

The first term on the right-hand side plays the role 
of a driving term, while P and D, as discussed below, 
will ultimately become the scattering terms. The second 
term on the right-hand side is proportional to the 
diagonal matrix elements, and will be later shown to 
entirely characterize the polaron-band motion. The 
term P is a population-like contribution which, after 
introducing irreversibility at a later stage in the calcu
lation, will ultimately become the population term in 
the Boltzmann equation for certain of the elements 
fP'P. It consists of two of the terms gotten by sub
stituting (3.1) into (2.17) which, after some minor 
algebra and interchange of summation indices, can be 
written in the form: 

P= £ ' (p'N\V\p"N") 
p'f ,pf,f ,N" 

X(p'"N"\V\pN)(l/li)t(l/a>NN„-is) 

- (l/<*M<>+is)3fp>>p>>>(N"), (3.5) 

where the prime denotes that the diagonal contri
butions (N"=N) are strictly absent from the sum. 

The remaining two terms, D, are the depopulation 
27 In the treatment of Kohn and Luttinger, Ref. 19, the cor

responding lowest order diagonal elements Z&'^X-2, where X is the 
strength of the scattering interaction and plays a role analogous 
to / of the present treatment. The reason for this difference is that 
in their treatment, the lowest order "driving term" C M ^ ^ X 0 , 
whereas, in the present case, it ^ J 1 , as we shall later show. 

UN>N^ (EN>—EN)/h. fp>N',pN= — (l/#)[l/(cojV'jv—is) 1 
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terms, and are given by 

D=D1+D2, 
where 

1 {p'N | V | p"N"){p"N" | V | p'"N) 

p",p'",N" U b>N"N~- 1>S 

XU»P(N), (3.6) 
and 

1 (p'"N | F | p"N")(p"N" | F | p'N) 
D2— ^ y . 

V",v'"',N" fl 0)NN"—is 

Xf,MW- (3.7) 

Let us first focus on the population term, (3.5). Our 
general procedure will be to manipulate this term for 
fixed s, and then let s become small with respect to the 
characteristic frequencies of the problem in order to 
obtain irreversible behavior.28 

It proves convenient to replace the difference of 
energy denominators by their integral representation 

( ; ~) = il dt'e^w't'e-*^'^ (3.8) 

which can be readily verified. 
To make further progress with (3.5), it is clear that 

the N" dependence of fP'>p>"(N") must be specified. 
It is first assumed that the diagonal elements are 
factorable29 

fw>{N") = \„;,..Xg(N"). (3.9) 

In addition, we make the "Stosszahlansatz" that 
g{N") is given by its equilibrium form30 

g(N'0 = Z - V - ^ ' ' , 0=(1/Ar) , (3.10) 
where 

is the vibrational partition function. These assumptions 
will be discussed in Sec. VI. 

We now substitute the expressions for the matrix 
elements, (2.8), into (3.5). Also using (3.8)-(3.10), the 
sum over N" becomes a product of sums, one for each 
allowable value of k, and can be readily carried out. 
In this connection, the assumption (3.10) works out 
rather simply: namely, it is found to simply add an 
imaginary part —ifih to the times multiplying the 

28 It has been pointed out that this limiting process, in addition 
to the usual "Stosszahlansatz", is an essential feature of irreversi
ble behavior. See E. N. Adams, Phys. Rev. 120, 675 (1960). 

29 This, of course, does not mean that the entire matrix / is 
diagonal. 

30 This stosszahlansatz is analogous to that made in the kinetic 
theory of gases, in which the distribution of particles about to 
collide with a given center is characterized by the equilibrium dis
tribution function. Classically, this corresponds to the neglect of 
position-velocity correlation. See D. Ter Haar, Elements of Sta
tistical Mechanics (Rinehart and Company, New York, 1954), 
p. 13. In addition, such an assumption implies that the density 
matrix is sufficiently slowly varying in N" space so as to permit, 
in effect, the replacement of energy denominators by Dirac delta 
functions. 
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frequencies of (3.8), while the remaining N dependence 
factors out, and is just the equilibrium function 
Z~1e~^EN. The latter then cancels the corresponding 
factors which multiply the remaining terms of (3.4) 
[the diagonal elements of p are also written in product 
form]. Following the general methods of Ref. 8, and 
replacing the iWs by their thermal average values, we 
obtain 

P 
n €" = ± i 

«'" = ± i 

f r 2 jSfconi 
Xexp j Y\ TA; coth \ 

I *L 91 2 JJ 

/

oo— iph/2 

dre-s\T\eispm 
-ao-iPh/2 

x\exJ-Zlp(k)(p'-p,e",ef") 

pfim ) -] 
XTfc csch COSC^T | — 1 . (3.11) 

The (—1) appearing in the square brackets represents 
the elimination of the diagonal elements (N"=N), 
which are rigorously excluded from the sum over N". 
Its presence removes the linear divergence of the 
integrand for large r discussed in Ref. 8. 

The quantity 

-w+ny\ (3.i2) 
represents spatial interference effects in the population 
(P) term arising from the matrix elements, and is of 
crucial importance. In particular, it is found that 

J p W ( ± l , ± l , ± l ) = - l , 

/pW(±l ,=Fl ,=Fl)=-cos2*, 

/p<*>(d=l,±l,=Fl) = cosft, 

7 p W ( 0 , ± l , ± l ) = - c o s & , 

I P < » ( 0 , ± 1 , = F 1 ) = + 1. 

Now, (3.11) can be considered in the two cases that 

Z* F(k)= (2/91) Zk7k csch(/?W2), (3.13) 

is much less than or much greater than unity. The 
latter case is the one of principal interest.31 In this case, 
the integrand is an oscillatory and rapidly damped 
function of r, and the method of steepest descents is 
applicable. For the case 7p= + l, the principal con-

31 This latter case, in fact, defines the multiphonon site-jump 
regime which takes the form of a classical, thermally activated, 
diffusion process at sufficiently high temperatures (kT^huo). 
The former case defines the regime in which a small number of 
phonons are emitted and absorbed in a site jump. The density-
matrix treatment has not been examined in detail for this regime. 
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tribution occurs in the neighborhood of r = 0 , and gives 
just the standard expression for the two-site jump rate. 
However, for the case Ip— — 1, the saddle points occurs 
at T~W/OOO where the contribution can be shown to be 
very small because of dispersion of the vibrational 
spectrum. Finally, for the cases Ip= (=tcos&, cos2&), 
the sum appearing in the exponential would vanish for 
an Einstein spectrum, and otherwise gives a very small 
contribution depending on «i, the vibrational band
width. I t is clear that the contributions for \p'—p\>l 
are likewise negligibly small. The final conclusion is 
that only the case p' = p, e"==bl , € / / / = z F l gives the 
usual integral for the jump probability. Thus, the 
population term contributes for p/==p, but is absent 
for p'?^p. The absence of a term for p'^p insures the 
existence of a relaxation time which will later be 
identified as the reciprocal jump rate, WT~1-
Finally, s is taken to be small with respect to the 
characteristic frequencies of the problem, specifically,32 

s«(kT/h), coo, WT~\ 

The integral over r can then be carried out in the 
complex plane by the methods given in Ref. 8. The 
final result is that 

P=ih±ilP±ihWT, (3.14) 
where 

where 

J2 

£2 

2TT 

(3fo(j0k 
7T~l I 2ykO>k2 c s c h dk 

o 2 

1/2 

Xexp 7T"1 / 2yk tanh dk (3.15) 

is the thermal average (T) jump rate [cf. Ref. 8, Eq. 

Having treated the population term in some detail, 
the depopulation terms of (3.4) will now be described 
in a more cursory fashion. For Dh defined by (3.6), 
we get 

J2 pO—iP?i/2 

= ± 1 
Pho)k 

Xexp] — X) ~ 7 k coth-

x[exp(- -ETib/D ( * ) (e , / ,€ / , / ) 
191 k 

X csch- • COSCO&T - ' ] • (3.16) 

32 In addition, s must be small compared to the reciprocal in
terval over which the dominant contribution to the integral (3.11) 
occurs. This implies the condition s<Kcco(7r~1J%Q7r dkF(k))112, where 
F(k) is given by (3.13). However, since the square root factor is 
» 1 , this inequality is automatically obeyed if s<$Ccoo. It might also 
be remarked that (3.5) would seem to imply the more stringent 
condition s<$Cwi, since (ooNNr')~a)i. However, this condition does 
not appear to be required by (3.11). 

.17) /D(*)(e / /,e / / ,) = - e , , € , / / c o s l V - —Y\ . (3 

One sees that /z>(A;)(zbl, ± 1 ) = — cos&, and hence 
gives a negligible contribution as discussed previously. 
Physically, this choice corresponds to the process 
(p'N->p"N" ->pf±.2, N), and represents a higher 
order contribution to the band motion, since N is 
exactly conserved. The principal contribution occurs 
for the choice 7 D ( ± 1 , =Fl) = + l, and corresponds to 
the process ^p"N"(pfN—> p"Nf'), that is, a simple 
scattering-out or depopulation contribution. 

A basic difficulty with regard to (3.16) is that the 
r-integration extends from (— oo — i/3h/2) to only 
(0-iph/2), rather than to (+&-iph/2). This is 
traceable to the appearance of only a single energy 
denominator in (3.6). If this were the final result, one 
would not get the usual integral for WT, but would 
instead have an addition contribution from the segment 
along the imaginary axis (0—i/3h/2) to (0,0). However, 
if one now considers the term D2, given by (3.7), one 
can cast the result in the form 

tl «" = ± } J Q-iph/2 
t'" = ±1 

f 2 pho3k] 
Xexp] £ yk coth \ 

I 3d k 2 J 

x f e x p ! - £ / , > < * > (eV")Y/c 
L 191 k 

Pfooojc 
X c S C h COSWicT \ — 1 

2 ] (3.18) 

Again, /#(=£: 1, ± 1) gives a negligibly small propagation 
contribution, while / ^ (db l , T l ) makes the principal 
contribution. One now sees that the principal contri
butions of D\ and D% add, after taking the limit of 
small s, to give the integral (—co—i/3h/2) to (+<*> 
-iph/2), and 

D= D1+D2=tfp,phWT. (3.19) 

Combining the results (3.4), (3.14), and (3.19), the 
steady-state Boltzmann equation33 in the local-site 
representation reads 

0=eF0(p'-p)Pp>p-Je-SHZl,+1,p+\p,„1,p-] 

~~np',P+i-)rh',P-{}}+tfp±i,P±ifi>WTdp'p 
-i\p'pfiWT, (3.20) 

where ST=Jlk (7*/9l) coth (fifuah/2) is the thermal 
average of S(N), given by (3.3). 

^ 33 xhe usefulness of a Boltzmann equation for the nondiagonal 
(in p, for this case) elements of the density matrix occurs in other 
areas of quantum transport. See P. N. Argyres. Phys. Rev. 117. 
315 (1960). 
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In the next section, (3.20) will be solved in order to 
evaluate the expectational value of small-polaron 
mobility. 

IV. CALCULATION OF THE CURRENT IN THE 
LOCAL-SITE REPRESENTATION 

As described in the introduction, the principal 
motivation of the present paper is to show that the 
expectation value of small-polaron mobility (in lowest 
order) is just the sum of a band part, in which the role 
of the nondiagonal matrix elements is to limit the 
lifetimes of the band states, plus a thermally assisted 
diffusion contribution due to hopping between local 
sites. 

The expectation value of the velocity, to first order 
in the electric field strength, is given by 

<v> = t r { V o p / } = E {pN\vQ»\pfNf)jp,N,,vN, ^4.1) 
pN 

p'N' 

where {pN\vov\p'Nr) is the matrix element of the 
velocity operator in the local-site representation, and 
will be calculated shortly. Equation (4.1) is more 
conveniently written 

(v) = (v)d+(v)nd,-

where the diagonal (d) part is given by 

<»>d= E (pN\vOJ>\p'N)fP,p(N), (4.2) 

p,p' ,N 

and the nondiagonal (nd) part by 

<»>nd= £ {pN I *>op | p'Nf)fv>N,,vN. i4.3) 
pN 

pf,N'^N 
The matrix elements of the velocity operator are 

straightforwardly gotten from the Heisenberg operator 
equation of motion 

vop—dn/dt= (i/n)[HT,n~\^ (i/n)£H,n~], 

where the last equality follows from the fact that the 
commutator of H^—eFn and n vanishes. Taking matrix 
elements between localized states, one gets 

(p'N'\vop\pN)= m)(p'N'\ V\pN){p'-p), (4.4) 

and is therefore entirely nondiagonal in p7 as one would 
intuitively expect. Making use of (3.2), the diagonal 
elements of vOT> are given by 

{pfN\vop\pN)=-i(J/ti)e-sW(p'--p) 

X £ V,P+e. (4.5) 

is most unambiguously carried out by the method of 
Karplus and Schwinger.34 Thus, with the density oper
ator given by p=Z~l exp£—P(HQ-\-V)~] £these symbols 
are defined in the text following (2.10)], one has 

(^ l expC-^^o+F) ] !^^^^- 1 ^^^^- 1 ^ 

+ E 

-mr1{pN\V\p,N/) 

{pN\V\ p"N")(p"N" \ V | p'N') 
3T 

xz-

flO)N"N' 

re-pEN> — e-PEN e-$EN" — e-&EN-

fro) NN' foa) NN'' 
+ • 

We next must solve (3.20) for fP'P. In order to do 
this, however, one must know the elements pv>v of the 
equilibrium density matrix. Now, p is the appropriate 
stationary density matrix at t= — °° when F = 0 . How
ever, since J9^0 at t= — °o, it will depend on V, and 
may be developed in a power series in / . This expansion t=-

Of particular interest is the leading term of the 
expansion 

Pw{Q) (N) = Z-le-tEKSNN,Wr^pv<, (4.6) 

which is diagonal both in N and in p. This form reflects 
the translational invariance of the problem in that it 
gives an equal a priori probability for the polaron being 
at any site on the linear chain. Thus, in this respect, 
the random-phase approximation is made at the initial 
time (t= — oo), but is not repeated at later times. Since 
p(0) is diagonal in p, it clearly will not contribute to the 
driving term of (3.20). The first such nonvanishing 
contribution is made by the second term of the above 
expansion, which is written 

Pp'tf'.p*(1)= - O T - ^ W I V\pN)Z-h~^ 
X ( l - 6 r ^ » ™ y W A O . (4.7) 

Thus, the first nonvanishing driving term of (3.20) is a 
mixed field-scattering term (^JXFQ). 

The corresponding diagonal elements are obtained 
by taking the limit as CONN' —> 0 smoothly. Using (3.2), 
the result is 

Pp'pVi^pJe-swz-itrfiz* E V . P - H . (4.8) 

These results suffice for our present purposes. Al
though we will not consider higher-order approxima
tions, it is of interest to note from the products of 
matrix elements appearing in the expansion, that only 
for the odd terms of the series will p'=pzkl. (For the 
second-order term, for example, it is clear that p'=p, 
p±:2.) Hence, only these can "drive" the fPfP±i which 
alone contribute to the net current, as will be later 
shown. 

We are now in a position to solve (3.20) for jp>p and 
obtain (v)d. The homogeneous solution of (3.20) is gotten 
by setting the driving (jFo-proportional) term equal to 

34 R. Karplus and J . Schwinger, Phys. Rev. 73, 1020 (1949), 
Appendix I ; also see Ref. 19, Appendix C. The expansion of the 
density operator can alternately be gotten by direct iteration of 
(2.12) under the equilibrium conditions (d/dt = 0) applicable at 
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zero, and is shown in Appendix A to entirely charac
terize the polaron-band motion, and not to contribution 
to the net current. The homogeneous solution can be 
shown to be orthogonal to the driving term, insuring 
the existence of the inhomogeneous solution given by 

eF0 Je~ST 

f p ' p = - t (p'-p) E fip'.iH-- 14.9) 
kT fiWT «-±i 

This is indeed of order J"-1, as claimed earlier. One sees 
that (4.5) and (4.9) are both properly odd in p space, 
in analogy with the properties of Vk and /& in the usual 
transport integral expression for the current of con
ventional band theory. Substituting (4.9) and (4.5) 
into (4.2), and recalling that fp>p(N) = \p>pZ-1erfiJsx, 
one obtains the first half of our result, namely, that 

(v)d=~FojJiB, (4.10) 

where the band contribution to the mobility, JUB, is 
given by the Einstein relation 

e r2Pe~2ST 1 
}JLB = -

kTl fi2 
-TT (4.11) 

and where TT—WT~1- The quantity in square brackets 
is just the band-diffusivity, and is identical with 
equation (100) of Ref. 8. 

Next, let us consider (v)nd, defined by (4.3). The 
lowest order fv>N',pN which could contribute to the 
sum is gotten by substituting (4.9) into (3.1). Dimen-
sionally, one sees that this fp>N',pN^J°. and since 
flpp^/1, this would lead to (fl)nd~/1. However, it is 
shown immediately below that this contribution in 
fact vanishes, and that one must go to the next order 
in fV'Nf,pN to obtain a finite contribution. To show 
this, we substitute (4.9), (3.1), and (4.4) into (4.3). 
Interchanging summation indices here and there, the 
result can be written: 

<*>nd ( 1 ) — E {p"-P')U»AN) 
ffi p'N ,p"N'r ,p"r 

X{p'N\ V\p"N")(p"N"\ V\p'"N) 

X 

By the previous arguments, the only choice giving a 
finite result is p"':=p'. In any case, however, some 
addition manipulation shows that the two choices 
p"—pr—zLl exactly cancel, with the result that 
(fl)nd

(1) = 0. The first nonvanishing contribution to 
(v)nd occurs if we use the fv>N',pN which is "driven" 
directly by the field term, namely £cf. (2.16)], 

1 1 
fp>N>,PN= -eFQ{pf—p)p{l)p>N>lpN. (,4.12) 

The above quantity36 ^J1, and leads to (v)nd
{2)^J2, 

which dimensionally is of the order of WT, as desired. 
We now substitute (4.7) for P(1)

P'N',PN into (4.12), 
and then, in turn, substitute (4.12) and (4.4) into (4.3). 
In addition, it proves convenient to symmetrize the 
resulting expression by adding the trace gotten by 
interchanging (p,N) and {p',Nr) in (4.3), and then 
dividing by two. The result reads 

eF0 (P'-P)2 

(v)n^ = i— E : \{pN\V\p'Nf)\2 

2fl2 pN,p'N> 91 

X 
1 

£-le-PEN 

[
\ £— pho>NN'-\ 

(4.13) 

In principal, there is some difficulty in carrying out the 
sum over Nf due to the presence of the last factor in 
square brackets, which cannot be expressed as a product 
over the individual vibrational modes. However, 
noticing that 

/ 1 1 

\uN>N—is UN'N+is 

= i / dt'eW'^'e-'W —> i2ird(o)NfN), (4.14) 
s->0+ 

one sees that energy conservation applies (in the sense 
of time-dependent perturbation theory), and that the 
square bracket can be replaced by its limit as CON'N —> 0, 
i.e., 

lim 
I - p—pfuoN>N-\ 

flWN't kT 

Using the first equality of (4.14), Eq. (4.13) can be 
written 

eF0 1 f 

<f>ndw=—mz (P'-P)2\ E z-v** 
kT dl V V' ( N 

2 r00 

X E - / \(pi 
N' h2 7-co 

-iwN'Nt' 

NI VI p'N') |2 e-s' *'W 

The factor in curly brackets is precisely WT as defined 
by Eqs. (47)-(49), and (51) of Ref. 8. Since this is 
independent of p, the summation over p just cancels 
the (1/91) factor, while the two cases p'=p=Ll cancel 
the factor of J. The final result can be put in the form 

(V)n 
,(2) = -FofXHy (4.15) 

35 There is an additional contribution to fP'N>,PN also of order 
J1 which is gotten by once iterating (2.16): specifically, by resub-
stituting (3.1) into (2.16), where fp,v is given by (4.9). Some exami
nation shows that this term makes a negligibly small contribution 
to the net current because of incoherence of the matrix elements of 
the type discussed in the text. 
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where the "hopping" mobility is given by 

HH=(e/kT)WTa\ 

EN is given by (2.5), and 

(4.16) AEfftN= -2Je~sm coso-. 

where a (\a\ = l) is the lattice constant of the linear 
chain. 

To summarize the principal results of this section: 
Total small-polaron mobility, within the jump-per
turbation approximation, takes the form of a sum 

VT = tJiB+/JlH, (4.17) 

where the band part, (4.11), arises from the diagonal 
part of the trace for the expectation value of velocity, 
while the hopping contribution (4.16) arises from the 
nondiagonal part. Thus, the present treatment verifies 
the separation of the two types of small-polaron motion 
made in Ref. 8 on the basis of physically reasonable 
considerations. In particular, the concept of the tran
sition temperature, Tt, as approximately defining the 
domain of validity of the two regimes, follows im
mediately. In addition, the result (4.16) reflects the 
translational invariance of the problem as expressed 
by (4.6). Further discussion of (4.17) is given in Sec. VI. 

V. POLARON MOBILITY IN THE POLARON-
BAND REPRESENTATION 

Some additional insight can be gained by reformu
lating the density-matrix treatment in the polaron-band 
representation of small-polaron motion. Since this 
development is in many ways similar to that given for 
the local-site representation, the results will be stated 
more briefly, with particular emphasis given to the 
differences36 between the two cases. 

Just as the local-site representation is the appro
priate choice at high temperatures (T>Tt), the 
polaron-band representation is more appropriate in 
the low-temperature regime (0< T<Tt). In the latter 
case, as discussed in Ref. 8, the diagonal matrix elements 
play the dominant role. If these alone are taken into 
account in (2.7), it is found that the stationary solutions 
to the latter equation are of the form 

Cp^e*** exp[i(*/A)]2/tf-*w> coscr, (5.1) 

where a, the polaron wave vector, takes on the usual 
values imposed by periodic boundary conditions. The 
corresponding eigenstates and eigenvalues are then 
given by 

a>a,N{ny- - -qk' • •) 

= e^Il^l(Mo>k/fi)^(qk-qk^)-], (5.2) 
h 

and 
Eff^—E^+AEa,-^, (5.3) 

respectively, where as before, N stands for (• • -AV • •)> 

36 These differences will not, of course, affect the final expectation 
value of velocity which is independent of representation. 

(5.4) 

Thus, in incorporating the diagonal matrix elements 
in zeroth order, the basic states (5.2) are Bloch-type 
plane-wave combinations of localized states, while the 
energy spectrum (5.3) is manifestly of a band-type 
character. 

The residual interaction due to the nondiagonal 
matrix elements is taken into account by expanding the 
total "wave function" a(n,- - -qk- • •) in the basis pro
vided by the polaron-band states 

a(n9- -qr • • )= E C ( ( r W ; / ) f l ^ r « ^ * ^ , (5.5) 
a'N' 

and then substituting this into the full Hamiltonian 
(2.1). In analogy with (2.7), the equations obeyed by 
the C(aN) are37 

6C(aN) 6C(aN) 
ih =ieF h £ (aN I V | a'N') 

dt da 

XCiv'NWMW-*''"^, (5.6) 

where the (aN \ V | <r'N') are the matrix elements of the 
perturbation in the polaron-band representation, and 
are given as plane-wave combinations of those in the 
local-site representation, i.e., 

(aN\V\a'N')= (l/$l)Z e i(p'a'- v°\pN\V\p'Nf). (5.7) 

As a consequence of writing (5.5) in the interaction 
picture, the sum (5.6) excludes the term for which 
a' = a and N' = N. Hence, (5.6) describes only non-
diagonal transitions between polaron-band states. Using 
(3.2), the above neglected diagonal matrix elements 
can in fact be shown to be of the form 

(aN\ V\</N)= -2Je-sw coso-S, (5.8) 

that is, the diagonal (in N) matrix elements are diagonal 
in a as well, a result which will be of needed in connec
tion with the evaluation of the velocity operator in the 
polaron-band representation. 

With the replacements 

(pN\V\p'N')-

' Ejsf-

(PT)PN,P'N' ' 

p'N' ,pN * eF\ 

•{aN\V\a'N') 

EaN, CONN' —> LO<TN,O'N' 

• (pT)aN,o'N' 

d d 

W da J 
W. 

37 The form of the electric field term follows from the standard 
procedure of replacing neimr by —i{d/da)ein<T

) integrating over <r 
by parts, and applying the periodic boundary conditions. 
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the equations of motion for the density matrix are 
closely analogous to (2.16) and (2.17) in the p repre
sentation. The only difference is the absence of diagonal 
elements of V in the sums over intermediate states 
(a"N"), this being compensated for in the analog of 
(2.17) by the appearance of an additional term 
(AE^JV-—A2^j\r)XjV<r(A0 in the zeroth-order energies. 

Consider first the analog of the population term (3.5). 
One substitutes (5.7) expressing the matrix elements in 
terms of those in the local-site regions. The summations 
are again restricted to those for which the interference 
factor £cf. (3.12)] gives a finite contribution. After 
some considerable algebra, one gets38 

Paff> = (2 cos(</—a)/<Jl)WT Z) U (5.9) 
ACT 

Of particular interest will be the case ar = a, Here, 

(5.10) 
ACT 

Now, it can be easily shown that the density matrices 
in the two representations are related by 

U=(i/9P)E^'(''p'-'1,W 
P'P 

From this, one can easily show that 

A<r p 

and, in particular, 

2~/ I c-f Ao-,<r-f A<r = 

(1/91) E f PP' 
A<r p 

However, summing (2.17) over (pN), and interchanging 
(pN) with {p"N") in the last terms of the sum, one 
sees that for any finite s > 0 , 

E f p p W ^ o , 
pN 

and therefore, 
E f p p ^ O . (5.11) 

p 

This simply expresses particle conservation given by 
the invariance of the trace of p: namely, that the 
electron must be somewhere in the crystal and that 
this is unchanged by the application of an electric field. 
The final result of these arguments is that 

P „ = 0 . (5.12) 

This result corresponds to the vanishing of the popu
lation term in the local-site representation for p'^p. 
[cf. (3.20) and text following (3.13).] Both results are 
consequences of the independence of WT on the initial 
and final states (this being characteristic of multi-
phonon processes). 

38 In getting this expression, we neglect the time-dependent ex
ponentials of the type exp{(#'/#)(Al^,#— AEff,N)}, in view of 
the smallness of Ea,N with respect to ha^ 

With respect to the depopulation terms, one again 
finds that the two analogs of D\ and D% add to give a 
conventional depopulation term of the form 

D^-I^WT. (5.13) 

I t will be seen immediately below that the case of 
interest is </ = cr. In this case, using (5.12) and (5.13), 
one gets the Boltzmann equation 

0 = (eFQ/fi)(dpffa/da)-WTU«. (5.14) 

This equation is quite analogous to the Boltzmann 
equation of conventional band theory, the first term 
representing a standard acceleration term, and the 
second a depopulation term characterized by a re
laxation time TT=WT~1 [ the population term is absent 
by virtue of (5.12)]]. In particular, a term analogous 
to the second term on the right-hand side of (3.4) is 
missing in (5.14). This term is shown in Appendix A 
to describe the polaron-band motion, and its absence 
in (5.14) simply reflects the fact that the latter is already 
accounted for in the basic states (for a' = a). 

The reason for the particular interest in the case 
a'=a can be seen from the form of the matrix elements 
of the velocity operator. Using (5.2) for the polaron-
band states, one straightforwardly finds that 

1/ d d\ 
{a'Nf | vop|aN) = - — + — )(afNf \V\*N), 

h\da' da J 
N'^N, (5.15) 

while 
(afN\v0P\aN)= (2Je~s^/fi) simrf,,,, (5.16) 

i.e., that the diagonal elements of vop are diagonal in a 
as well, this being a consequence of (5.8). 

One can also show that 

P«o{l)= (pJe-8r/Vl)2 coso-. (5.17) 

Substituting (5.17) into (5.14), solving for fff(r, and 
taking into account (5.16), one finds that 

<^>d=Z v90f90=-(eFdkT)(2Je-**/h)*TT(yw) 
a 

X L sinV 
(X 

= - {eF,/kT)[_(2Pe-2ST/tf)TT-] y (5.18) 

a result identical with (4.11). 
Finally, from the nondiagonal density-matrix equa

tion, one has that 

1 1 / d d\ 
f<r'N',<rN~ —i 7e^°\ 1 ) 

ft <j3a>N',aN~^ \d(Jf da/ 

XP<,>N>,«N{1\ (5.19) 
where 

\ \ — e-pho>NNf 

9l2 feojviv 

X(<r'N'\V\<rN). (5.20) 
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From (5.19), and (5.15), one can establish that 

(f l )nd= £ V<rN,<T'N'f<r'N>,aN= 1 1 , VpN,p'N'fp'N',pN, 
ffN,a'N' pN,p'N' 

and is, therefore, identical with the result 

eF0 
(vU= WTa\ (5.21) 

kT 

obtained in the local-site regime. This establishes the 
equivalence of our final result in the two representations. 

VI. SUMMARY AND DISCUSSION OF RESULTS 

In this section, we present some discussion of the 
physical significance of our results. Our final result 
(4.17) states that, to lowest order in the density-matrix 
treatment, the two contributions to the mobility are 
additive. Thus, both mechanisms are operative at any 
given temperature, although one of the two dominates 
at temperatures far from the transition region (which, 
to lowest order, is now entirely characterized by the 
above additivity of our result). In particular, the theory 
predicts no discontinuous change from band-like 
behavior to a localized description of the mobility. I t 
might (hopefully) serve to clarify this point by con
trasting our result with the well-known predictions of 
Mott.39 Mott considered the conductivity of a crystal
line array of atoms as a function of their interatomic 
spacing. He presented arguments to the effect that, at 
some critical value of the interatomic spacing, there 
should be an abrupt transition from a localized, real 
(and therefore nonconducting) state, to nonlocalized 
current-carrying state. For an array of monovalent 
atoms,40 he emphasizes that these are not alternate 
zeroth order descriptions of the ground-state wave 
function, but rather correspond to physically different 
states, the one assumed by the system being the one 
of lower energy. In the present paper we are not, of 
course, comparing conventional band theory with a 
localized treatment of the charge carrier. The parame
ters of the theory are assumed to be such as to favor 
localization and small-polaron formation ( /<£&, r}2<0)> 
Rather, we are studying the question of whether small-
polaron motion occurs predominantly by polaron-band 
motion, or via site-jump transitions. The thesis of the 
present paper is that this question is decided by the 
simultaneous action of the two basic classes of matrix 
elements, and their relative importance as a function 
of temperature. In particular, the effects of the diagonal 
and nondiagonal matrix elements, essentially contained 
in the polaron bandwidth and site-jump rates, respec
tively, are continuous (albeit exponential) functions 
of the temperature; there is therefore no reason to 

39 N. F. Mott, Can. J. Phys. 34, 1356 (1956). 
40 For divalent atoms, the two representations (i.e., Heitler-

London and Bloch) are equivalent; however, Mott gives additional 
arguments for the abrupt transition. Thus, in this respect, this 
contrast is not entirely appropriate. 

expect any discontinuity. Thus, the persistence of some 
small residual amount of band motion for T>Tt, in 
the opinion of the present author, is simply a mani
festation of the fact that band motion will always exist 
and contribute to the conductivity whenever one has 
periodicity, as indeed one has in the present case. The 
fact that its contribution is small, simply means that, 
from one point of view, the time for the polaron to 
move a lattice spacing via band motion (^h/AE^^N)) 
is much larger than the time between multiphonon 
site-jump transitions (WT~1). The latter therefore 
dominate the charge transport in this regime (T>Tt). 
For T<Tt, the diagonal matrix elements dominate, 
and polaron-band motion, described by the alternate 
Boltzmann Eqs. (3.20) and (5.14), is the principal 
conduction mechanism. Here, the nondiagonal tran
sitions provide scattering between polaron-band states, 
and, as shown by (4.17), also make a small contribution 
of their own to the hopping mobility. The particular 
choice15 of band states appropriate to this regime, it 
should be emphasized, plays no essential role, since (v) 
is independent of representation. 

In conclusion, the following additional points should 
be noted with respect to the specific treatment of the 
present paper. First, the iteration procedures employed 
on Eqs. (2.16) and (2.17) are essentially the same as 
those of other more conventional treatments of quantum 
transport.19'33 In this connection, the use of perturbation 
theory is strictly valid, since it has been assumed that 
*72<K1 (cf. footnote 22). Turning next to the separability 
assumption (3.9), this simply expresses the fact that 
the thermal excitation of the many degrees of freedom 
of the lattice is insensitive to the location of the single 
excess electron (or hole). With regard to the stoss-
zahlansatz (3.10), it should be pointed out that such 
an assumption is a necessary ingredient of any theory 
which obtains irreversible behavior from entirely time-
reversible density-matrix equations of motion, as far 
as is known to the present author p n this connection, 
see the discussion following Eq. (42) of Ref. 19]. This 
assumption should not basically affect the structure of 
the final results, specifically, the additivity of the two 
contributions to small polaron mobility which, as em
phasized earlier, depends basically on the decomposition 
of (v) into parts depending on the diagonal and non-
diagonal matrix elements of the perturbation. 
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APPENDIX A 

In this Appendix, we discuss the physical significance 
of the homogeneous solution of the difference Eq. (3.20) 
(which obtains for zero driving term, i.e., F0=0). I t is 
instructive to first consider the solution of (3.20) which 
applies in the absence of damping, that is for WT=0 
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(i.e., to order J1). For this case, a possible solution is of 
the form41 

\P'p ° > 

where, for reasons which will be evident shortly, o> 
denotes the real part of the wave vector, a. For / to 
be Hermitian, 

\p'p = T P I > ' > 

it follows that cr/ = 0>, and 

\%>>v=eiW-rt°r (Al) 

satisfies (3.4) (for WT=0) identically.42 

This is a propagating type solution describing the 
polaron-band motion in the absence of damping. The 
contribution made by (Al) to the expectation value of 
the velocity is 

p'pN 

where 

/p,p(A0=z-v-^u 
where \v>p is given by (Al), and vp>p(N) by (4.5). One 
straightforwardly finds that 

Je-ST 1 
(v)ff = E witar 

ftdl i p.e=±i 

= (2Je-sT/fi)smar, (A2) 

that is, the expectation value of velocity in polaron-
band state dr. 

However, instead of (Al), one should really have 
the superposition43 

f p ' p = ( l / 9 l ) E e * ^ - ^ ^ r . (A3) 

41 This form also follows directly from the definition (2.9) to
gether with (5.1). 

42 Substituting (Al) into (3.20) (for F0=0, WT = 0) gives 
—2Je~ST (coso— coso-) = 0. 

43 This is, of course, nothing more than the transformation of the 
density matrix from the local-site (p) to the polaron-band (a) 
representation. 

Letting ar—> — ov in (A3) and again using the Her-
meticity condition fp'P*=fPj/9 one finds that 

Ur=Ur- (A4) 

Hence, the net current due to the homogeneous solution 
in the absence of damping is 

2Je~ST 1 
(v)h=T, (V)<rr = L U Smo>=0, (A5) 

<Tr ft 9 1 err 

because of (A4). This simply verifies that the un
perturbed polaron-band motion (in the absence of both 
scattering and the electric field) carries no net current. 

A somewhat more interesting case occurs for non-
vanishing damping (WT^O). Since the coefficients of 
(3.20) are constants, a representative solution is again 
of the form (Al); however, it is clear that (3.20) 
cannot be satisfied by a pure real. Rather, one must 
have 

(j—(ir—i(Ti/2y a' — Gr—ia//2. 

Again from the Hermiticity condition, one gets that 

CTf — O' r , O' % — (J % , 

and 
^^p=ei(pf-p)<Tre~^p,+p)<Ti (A6) 

Thus, in addition to the propagating part depending 
on the difference (p'—p), there is an additional part 
depending on the centroid [_(p'+p)/2~], which describes 
damping of the polaron-band motion due to the non-
diagonal transitions. jThe relation between <r; and the 
amount of damping may be obtained by substituting 
(A6) into (3.20); one finds that 

/o-A ftWT 
sinh - 1 = . (A7) 

\ 2 / 4Je-ST sinov 

It may be noted that the damping becomes infinite 
for sino>=0, i.e., for zero velocity of propagation; 
however, this causes no formal difficulties. Finally, one 
can show that the expectation value of velocity (v) is 
identically zero for the state (A6), as it must be. 


